Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.085
1.
J Cell Mol Med ; 28(9): e18295, 2024 May.
Article En | MEDLINE | ID: mdl-38722284

The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.


Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Female , Prognosis , Middle Aged , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Movement/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Clinical Relevance
2.
Elife ; 122024 May 10.
Article En | MEDLINE | ID: mdl-38727722

Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.


To correctly give rise to future tissues, cells in an embryo must receive and respond to the right signals, at the right time, in the right way. This involves genes being switched on quickly, with cells often ensuring that a range of molecular actors physically come together at 'transcription hubs' in the nucleus ­ the compartment that houses genetic information. These hubs are thought to foster a microenvironment that facilitates the assembly of the machinery that will activate and copy the required genes into messenger RNA molecules. The resulting 'mRNAs' act as templates for producing the corresponding proteins, allowing cells to adequately respond to signals. For example, the activation at the cell surface of a molecule called Notch triggers a series of events that lead to important developmental genes being transcribed within minutes. This process involves a dedicated group of proteins, known as Notch nuclear complexes, quickly getting together in the nucleus and interacting with the transcriptional machinery. How they do this efficiently at the right gene locations is, however, still poorly understood. In particular, it remained unclear whether Notch nuclear complexes participate in the formation of transcription hubs, as well as how these influence mRNA production and the way cells 'remember' having been exposed to Notch activity. To investigate these questions, DeHaro-Arbona et al. genetically engineered fruit flies so that their Notch nuclear complexes and Notch target genes both carried visible tags that could be tracked in living cells in real time. Microscopy imaging of fly tissues revealed that, due to their characteristics, Notch complexes clustered with the transcription machinery and formed transcription hubs near their target genes. All cells exposed to Notch exhibited these hubs, but only a third produced the mRNAs associated with Notch target genes; adding a second signal (an insect hormone) significantly increased the proportion. This illustrates how 'chance' and collaboration influence the way the organism responds to Notch signalling. Finally, the experiments revealed that the hubs persisted for at least a day after removing the Notch signal. This 'molecular memory' led to cells responding faster when presented with Notch activity again. The work by DeHaro-Arbona sheds light on how individual cells respond to Notch signalling, and the factors that influence the activation of its target genes. This knowledge may prove useful when trying to better understand diseases in which this pathway is implicated, such as cancer.


Receptors, Notch , Receptors, Notch/metabolism , Receptors, Notch/genetics , Animals , Transcription, Genetic , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Signal Transduction , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Stochastic Processes , Cell Nucleus/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731894

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Cell Proliferation , Diterpenes , Epoxy Compounds , Phenanthrenes , Receptor, Notch1 , STAT3 Transcription Factor , Signal Transduction , Zebrafish , Animals , Epoxy Compounds/pharmacology , Phenanthrenes/pharmacology , Diterpenes/pharmacology , STAT3 Transcription Factor/metabolism , Cell Proliferation/drug effects , Signal Transduction/drug effects , Humans , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cell Line, Tumor , Receptors, Notch/metabolism
4.
Mol Genet Genomic Med ; 12(5): e2445, 2024 May.
Article En | MEDLINE | ID: mdl-38722107

BACKGROUND: FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS: In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS: Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION: This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.


CRISPR-Cas Systems , Congenital Disorders of Glycosylation , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Humans , Fucose/metabolism , Glycosylation , Receptors, Notch/metabolism , Receptors, Notch/genetics , Phosphotransferases (Alcohol Group Acceptor)
5.
Article En | MEDLINE | ID: mdl-38641164

The Notch signaling pathway plays a pivotal role in governing cell fate determinations within the gonadal niche. This study provides an extensive elucidation of the male and female gonadal niches within Crassostrea gigas. Examination via transmission electron microscopy revealed the presence of desmosome-like connection not only between germ cells and niche cells but also among adjacent niche cells within the oyster gonad. Transcriptomic analysis identified several putative Notch pathway components, including CgJAG1, CgNOTCH1, CgSuh, and CgHey1. Phylogenetic analysis indicated a close evolutionary relationship between CgJAG1, CgNOTCH1, and CgHey1 and Notch members present in Drosophila. Expression profiling results indicated a notable abundance of CgHey1 in the gonads, while CgJAG1 and CgNOTCH1 displayed distinct expression patterns associated with sexual dimorphism. In situ hybridization findings corroborated the predominant expression of CgJAG1 in male niche cells, while CgNOTCH1 was expressed in both male and female germ cells, as well as female niche cells. These findings demonstrate the important role of the Notch signaling pathway in the gonadal niche of oysters.


Cell Communication , Crassostrea , Gonads , Phylogeny , Receptors, Notch , Signal Transduction , Animals , Crassostrea/genetics , Crassostrea/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Male , Female , Gonads/metabolism , Germ Cells/metabolism
6.
Pathol Res Pract ; 257: 155282, 2024 May.
Article En | MEDLINE | ID: mdl-38608371

Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.


Neoplasms , RNA, Long Noncoding , Receptors, Notch , Signal Transduction , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic/genetics , Animals
7.
Eur J Pharmacol ; 973: 176574, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642670

Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.


Osteogenesis , Osteoporosis , Signal Transduction , Humans , Osteoporosis/drug therapy , Osteoporosis/metabolism , Animals , Osteogenesis/drug effects , Signal Transduction/drug effects , Bone Morphogenetic Proteins/metabolism , Hedgehog Proteins/metabolism , Molecular Targeted Therapy , Receptors, Notch/metabolism
8.
Cell Mol Life Sci ; 81(1): 195, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653877

The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.


Drosophila Proteins , Membrane Proteins , Myosin Heavy Chains , Receptors, Notch , Signal Transduction , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Wings, Animal/metabolism , Wings, Animal/growth & development , Drosophila/metabolism , Drosophila/genetics , Phenotype , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Cell Proliferation , Myosin Type II/metabolism , Myosin Type II/genetics
9.
J Physiol ; 602(10): 2265-2285, 2024 May.
Article En | MEDLINE | ID: mdl-38632887

The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4  regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.


Adaptor Proteins, Signal Transducing , Animals, Newborn , Calcium-Binding Proteins , Claudin-5 , Endothelial Cells , Hyperoxia , Receptors, Notch , Signal Transduction , Animals , Hyperoxia/metabolism , Claudin-5/metabolism , Claudin-5/genetics , Mice , Humans , Endothelial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Brain/metabolism , Brain/blood supply , Brain/growth & development , Mice, Inbred C57BL , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
10.
Front Immunol ; 15: 1375864, 2024.
Article En | MEDLINE | ID: mdl-38650927

Immunotherapy has emerged as the primary treatment modality for patients with advanced Hepatocellular carcinoma (HCC). However, its clinical efficacy remains limited, benefiting only a subset of patients, while most exhibit immune tolerance and face a grim prognosis. The infiltration of immune cells plays a pivotal role in tumor initiation and progression. In this study, we conducted an analysis of immune cell infiltration patterns in HCC patients and observed a substantial proportion of CD8+T cells. Leveraging the weighted gene co-expression network analysis (WGCNA), we identified 235 genes associated with CD8+T cell and constructed a risk prediction model. In this model, HCC patients were stratified into a high-risk and low-risk group. Patients in the high-risk group exhibited a lower survival rate, predominantly presented with intermediate to advanced stages of cancer, displayed compromised immune function, showed limited responsiveness to immunotherapy, and demonstrated elevated expression levels of the Notch signaling pathway. Further examination of clinical samples demonstrated an upregulation of the Notch1+CD8+T cell exhaustion phenotype accompanied by impaired cytotoxicity and cytokine secretion functions that worsened with increasing Notch activation levels. Our study not only presents a prognostic model but also highlights the crucial involvement of the Notch pathway in CD8+T cell exhaustion-a potential target for future immunotherapeutic interventions.


CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Signal Transduction , Humans , CD8-Positive T-Lymphocytes/immunology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Prognosis , Receptors, Notch/genetics , Receptors, Notch/metabolism , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Female , Biomarkers, Tumor/genetics , Receptor, Notch1/genetics , Middle Aged
11.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622406

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


DNA Methylation , Hippocampus , Mice , Animals , DNA Methylation/genetics , Bromodeoxyuridine/metabolism , Hippocampus/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Receptors, Notch/metabolism , RNA, Messenger/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
12.
Cell Commun Signal ; 22(1): 244, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671406

Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-ß), Notch, and Wnt/ß-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/ß-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/ß-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/ß-catenin, Notch, and the TGF-ß signaling pathways, as well as the deregulation of Wnt/ß-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/ß-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.


Receptors, Notch , Transforming Growth Factor beta , Wnt Signaling Pathway , Wound Healing , Humans , Receptors, Notch/metabolism , Animals , Transforming Growth Factor beta/metabolism , Chronic Disease , beta Catenin/metabolism , Signal Transduction
13.
Biomolecules ; 14(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38672496

Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.


Glioblastoma , Receptors, Notch , Signal Transduction , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/therapy , Glioblastoma/drug therapy , Receptors, Notch/metabolism , Disease Progression , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Molecular Targeted Therapy , Animals
14.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Article En | MEDLINE | ID: mdl-38579712

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Alveolar Epithelial Cells , Cell Lineage , Lung , Regeneration , Stem Cells , Animals , Mice , Stem Cells/metabolism , Stem Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/cytology , Lung/cytology , Lung/metabolism , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Receptors, Notch/metabolism , Lung Injury/pathology , Cell Differentiation , Signal Transduction , Mice, Inbred C57BL
15.
Redox Biol ; 72: 103160, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631120

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Cell Differentiation , Ferroptosis , Goblet Cells , Iron Overload , Oxidative Stress , Receptors, Notch , Signal Transduction , Stem Cells , Animals , Ferroptosis/drug effects , Mice , Goblet Cells/metabolism , Iron Overload/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation/drug effects , Receptors, Notch/metabolism , Oxidative Stress/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Male
16.
Cell Death Dis ; 15(4): 301, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684650

Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.


Bone Morphogenetic Protein 4 , Calcitriol , Carrier Proteins , Cell Differentiation , Colon , Dibenzazepines , Goblet Cells , Kruppel-Like Factor 4 , Organoids , Receptors, Notch , Signal Transduction , Humans , Organoids/drug effects , Organoids/metabolism , Cell Differentiation/drug effects , Bone Morphogenetic Protein 4/metabolism , Colon/drug effects , Colon/metabolism , Colon/cytology , Colon/pathology , Receptors, Notch/metabolism , Signal Transduction/drug effects , Calcitriol/pharmacology , Goblet Cells/drug effects , Goblet Cells/metabolism , Dibenzazepines/pharmacology , Cell Lineage/drug effects , Enterocytes/metabolism , Enterocytes/drug effects , Enterocytes/cytology , Vitamin D/pharmacology
17.
Cell Death Dis ; 15(4): 284, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654000

Intestinal stem cells (ISCs) play a crucial role in the continuous self-renewal and recovery of the intestinal epithelium. In previous studies, we have revealed that the specific absence of Claudin-7 (Cldn-7) in intestinal epithelial cells (IECs) can lead to the development of spontaneous colitis. However, the mechanisms by which Cldn-7 maintains homeostasis in the colonic epithelium remain unclear. Therefore, in the present study, we used IEC- and ISC-specific Cldn-7 knockout mice to investigate the regulatory effects of Cldn-7 on colonic Lgr5+ stem cells in the mediation of colonic epithelial injury and repair under physiological and inflammatory conditions. Notably, our findings reveal that Cldn-7 deletion disrupts the self-renewal and differentiation of colonic stem cells alongside the formation of colonic organoids in vitro. Additionally, these Cldn-7 knockout models exhibited heightened susceptibility to experimental colitis, limited epithelial repair and regeneration, and increased differentiation toward the secretory lineage. Mechanistically, we also established that Cldn-7 facilitates the proliferation, differentiation, and organoid formation of Lgr5+ stem cells through the maintenance of Wnt and Notch signalling pathways in the colonic epithelium. Overall, our study provides new insights into the maintenance of ISC function and colonic epithelial homoeostasis.


Claudins , Homeostasis , Receptors, Notch , Stem Cells , Wnt Signaling Pathway , Animals , Mice , Cell Differentiation , Cell Proliferation , Claudins/metabolism , Claudins/genetics , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Colon/metabolism , Intestinal Mucosa/metabolism , Mice, Knockout , Organoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Notch/metabolism , Stem Cells/metabolism , Stem Cells/cytology
18.
Development ; 151(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38512712

The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model. We reveal that tissue-wide compression forces generated by cell proliferation, in coordination with the Notch signaling pathway, are essential for the formation of epithelial folds in precise locations along the proximo-distal axis of the leg. As cell numbers increase, compressive stresses arise, promoting the folding of the epithelium and reinforcing the apical constriction of invaginating cells. Additionally, the Notch target dysfusion plays a key function specifying the location of the folds, through the apical accumulation of F-actin and the apico-basal shortening of invaginating cells. These findings provide new insights into the intricate mechanisms involved in epithelial morphogenesis, highlighting the crucial role of tissue-wide forces in shaping a three-dimensional organ in a reproducible manner.


Cell Proliferation , Drosophila Proteins , Drosophila , Receptors, Notch , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epithelium/metabolism , Morphogenesis/genetics , Signal Transduction , Receptors, Notch/metabolism
19.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38542260

Notch signaling is involved in the prevention of cell differentiation and cell fate in various organs, including the lungs. We aimed to determine the transcriptomic and protein expression of Notch receptors, their ligands, and related transcription factors in stable COPD. The expression and localization of Notch receptors, their ligands, and related transcription factors were measured in bronchial biopsies of individuals with stable mild/moderate (MCOPD) (n = 18) or severe/very severe (SCOPD) (n = 16) COPD, control smokers (CSs) (n = 13), and control nonsmokers (CNSs) (n = 11), and in the lung parenchyma of those with MCOPD (n = 13), CSs (n = 10), and CNSs (n = 10) using immunohistochemistry, ELISA tests, and transcriptome analyses. In the bronchial biopsies, Notch4 and HES7 significantly increased in the lamina propria of those with SCOPD compared to those with MCOPD, CSs, and CNSs. In the peripheral lung bronchiolar epithelium, Notch1 significantly increased in those with MCOPD and CSs compared to CNSs. ELISA tests of lung parenchyma homogenates showed significantly increased Notch2 in those with MCOPD compared to CSs and CNSs. Transcriptomic data in lung parenchyma showed increased DLL4 and HES1 mRNA levels in those with MCOPD and CSs compared to CNSs. These data show the increased expression of the Notch pathway in the lungs of those with stable COPD. These alterations may play a role in impairing the regenerative-reparative responses of diseased bronchioles and lung parenchyma.


Pulmonary Disease, Chronic Obstructive , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Cell Differentiation/genetics , Receptor, Notch1/metabolism
20.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38542296

The highly conserved Notch signaling pathway affects embryonic development, neurogenesis, homeostasis, tissue repair, immunity, and numerous other essential processes. Although previous studies have demonstrated the location and function of the core components of Notch signaling in various animal phyla, a more comprehensive summary of the Notch core components in lower organisms is still required. In this review, we objectively summarize the molecular features of the Notch signaling pathway constituents, their current expression profiles, and their functions in invertebrates, with emphasis on their effects on neurogenesis and regeneration. We also analyze the evolution and other facets of Notch signaling and hope that the contents of this review will be useful to interested researchers.


Invertebrates , Receptors, Notch , Animals , Receptors, Notch/genetics , Receptors, Notch/metabolism , Invertebrates/metabolism , Signal Transduction
...